
-94,95 29 ADO (TRADE NMAE) COMPILER VALIDATION SUMMRY REPORT:
IBM CORPORATION IBM D..(U) INFORMATION SYSTEMS AND

II TECHNLOGY CENTER H-P AFI OH ADA YALI. 19 MAY 99
UNCRSIFIED AVF-VR-82.£007 F/O 12/5 6

"cal - I , L ,
'III'*~ 132 11112.2

U.116 La' il'.

01. 60ii

OlIIIIVN

fill
1111 H

E (When Data Entered)AD-A 195 529 ENTATION PAGE READ______________

BEFORE COMPLETEING FOPM

12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubtite) 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: IBM 19 May 1987 to 19 May 1988

corporation. IBM Development System for the
Ada Language System Version 1.1.0, IBM 4381 6. PERFORMING ORG. REPORT NUMBER
under VM/SP CMS, Release 3.6.

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Wright-Patterson AFB OH 45433-6503

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Wright-Patterson AFB OH 45433-6503 AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 19 May 1987
United States Department of Defense 13. NUMUEK OF PAGES
Washington, DC 20301-3081 33p.

14. MONITORING AGENCY NAME & ADORESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)
Wright-Patterson AFB OH 45433-6503 UNCLASSIFIED

15a. REJ8FJICATION/DOWNGRADING
N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED Y '9
JUL I

18. SUPPLEMENTARY NOTES

.

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

IBM Development System for the Ada Language System, Version 1.1.0, 1.%

International Business Machines Corporation, Wright-Patterson AFB.
IBM 4381 under VM/SP CMS, Release 3.6 (host and target). ACVC 1.8.

DD 0'w 1473 EDITION OF 1 NOV 65 IS OBSOLETE

I JAN 73 S/N 0t0-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Enre'ed)

AVF Control Number: AVF-VSR-82.1087
87-03-10-TEL !

Ada® COMPILER
VALIDATION SUMMARY REPORT:

International Business Machines Corporation
IBM Development System for the Ada Language System, Version 1.1.0

IBM 4381 under VM/SP CMS

Completion of On-Site Testing:
19 May 1987

Prepared By:
kda Validation Facility

ASD/SCOL
Wright-Patterson AFB OH 454133-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington, D.C.

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

M EXR, C

!0

Ada® Compiler Validation Summary Report:

Compiler Name:
IBM Development System for the Ada Language System, Version 1.1.0

Host: Target:
IBM 4381 under IBM 4381 under

VM/SP CMS, Release 3.6 VM/SP CMS, Release 3.6

Testing Copleted 19 May 1987 Using ACVC 1.8

Th- ... oort has been reviewed and is approved. 0

14 1

Ada Validation Facility
Steven P. Wilson
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

-

da Validation *Organization
Dr. John F. Kramer _csin__

Institute for Defense Analyses .cessio For

Alexandria VA I s RA&I
DTIC TA5

IUnarmnouncrd
E

Justificatio

Ada ~ et2) n 2_~22-- By
Ada Mint Program Office Distribution-
Virginia L. Castor A

DirectorAvailability CodesDirector - [vj

Department of Defense -
Washington DC Di Special

OAda is a registered trademark of the United States Government .

(Ada Joint Program Office).

Ir0

EXCUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the IBM Development System for the Ada5
:.a.guage System, Version 1.1.9, using Version 1.8 of the Ada Compiler
iaj it~tion Capability (ACVC). The IBM Development System foe the Ada
Lai -, . System is hosted on an IBM 4381 operatioF under VM/SP CMS, Re.ease
3.6. Programs processed by this ,-ompibr ,nay be :ixecuted on an IBM 14381
)pvr', -iJng , 'M/ /p CMS, Release 3.6.

I j ' !s ing was perf'oimed 18 -I '507 through 19 May 1987 at
lnter;,t,.innal Business Machines Corporation, San Diego CA, under the
direction of the Ada Validation Facility (AVF), according to Ada Validation
Organization (AVO) policies and procedures. The AVF identified 2102 of the
2399 tests in ACVC Version 1.8 to be processed during on-site testing of
the compiler. The 19 tests withdrawn at the time of validation testing, as
well as the 278 executable tests that make use of floating-point precision
exceeding that supported by the implementation, were not processed. After
the 2102 tests were processed, results for Class A, C, D, and E tests were
examined for correct execution. Compilation listings for Class B tests
were analyzed for correct diagnosis of syntax and semantic errors.
Compilation and link results of Class L tests were analyzed for correct
detection of errors. There were 62 of the processed tests determined to be
inapplicable. The remaining 2040 tests were passed.

The resu~is of validation are summarized in the following table:

RtSfSl(,T CHAPTER TOTAL
- 3 6 7 8 9 10 11 12 14

Passed 93 205 280 243 160 97 137 262 107 32 217 207 2040

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 23 120 140 4 1 0 2 0 23 0 1 26 340

4ithdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD-1815A Ada.

MAda is a registered trademark of the United States Government
(Ada Joint Program Office).

- - - - - - - - -

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 0

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS1-3
'.. ACVC TEST CLASSES I. 1-4

• .CONFIGURATION INFORMATiON

CONFIGURA1'ig fESTED I... 2-1
TMPl.f M iX± LON CHARAi;TlRrSTICS.. 2-2 0

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1 0
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 SPLIT TESTS 3-4
3.7 ADDITIONAL TESTING INFORMATION3-4
3.7.1 Prevalidation 3-4
3.7.2 Test Method 3-5
3.7.3 Test Site 3-5

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX 13 APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

j%" %'

dS.,
".'.

CHAPTER

INTRODUCTION

) - ~ 3ui~;u~R;eport ~)':ii---Pscz'ibk?, l h; xien. o wi.) a
peci.... Ada compiler conforms to thu Ada Standard, -NS7MIL-STD-1 -.-- --

This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Oth,' differences between compilers result from characteristics of
p ,w.4~iar operating systems, hardware, or implementation strategies. All
of the dlependencies observed during the process of testing this compiler
are .yen in this report.

The information in this report is derived from the test results produced
duv .oYg validation testing. The validation process includes submitting a
suito of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1-1

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

" To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

" To attempt to identify any unsupported language constructs
required by the Ada Standard

To determine]'at the iUptmer1.ttion-depenf-. t behavior is allowed
r he Ada Stand;-rd

TestLrlr . _ " s oompiller mas conducted by SofTech, In,'., under the
directi. n of the AVF according to policies and procedures established by
the Adi Validation Organization (AVO). On-site testing was conducted from
!8 May 1987 through 19 May 1987 at International Business Machines
-orporation, San Diego CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

1-2

-u -. ~ .~~ ~ - ~ ~ ~ u - ~ ~ ,%~ % % % N

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 R:FiRENCES

1 . efe,'. Manual for the Ada oramming nn
ANSI/MTL-STD-1815A, February 1983.

2. ida validation Organization: Procedures and Guid3lines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1984.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs
that evaluates the conformity of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

Ada "tandard ANSI/MIL-STD-1815A, February 1983.

AppLicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the oontext of this
report, the AVO is responsible for setting procedures for
compiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

1-3

INTRODUCTION

Inapplicable A test that uses features of the language that a compiler is
test not required to support or may legitimately .upport in a way

other than the one expected by the test.

Passed test A test for which a compiler generates the expected result.

Target The nmputer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
iarticular featui., or features to the Ada Staidard. In the
context of this re!lort, the term is used to designate a
single test, which may fornrtse one or more files.

-. . A test found to be incorrec-; and not ,sed ;o check ccL,'.'mity
to the Ada language specification. ,- 1'.:;it may '-1 incorrect
be,:ause it has an invalil test obj-tive, fails o neet i.:
test objethive, or contains illnKal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tcsts are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see if

the test objective has been met. For example, a Class A test checxs that
reserved words of another language (other than those already reserved in

the Ada language) are not treated as reserved words by an Ada compiler. A
"lass A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class

B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or

semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,

FAILED, or NOT APPLICABLE message indicating the result when it is

executed.

Class D tests check the compilation and execution capacities of a compiler.

Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers

1-4

)'

INTRODUCTION

permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard p ,v!.'3 an implementation to reject programs containing some
features aldrc .3sed by Class E tests during. oom. dation. Thereforz,; a Class
E test is pa5e by a compi- if it ts compiled successfully and ewccutes
-o prodivn a PASSrID message, or if tt is re,3irted by the compiler i'ur an

. L ..-. s cec> h.t incomplete oi Lllegal .Ada programs involving
rultiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution iu attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set if identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chap-,., 14 of the Ada Standard. The operation of these units is checked by
a set n. executable tests. These tests produce messages that are examined
to vt-.:.ify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with ;:+ maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specit.e values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation.

1-5

INTRODUCTION

Any test that was determined to contain an illegal language construct or an
erroneous language construct is withdrawn from the ACVC and, therefore, is
not used in testing a compiler. The tests withdrawn at the time of
validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: IBM Development System for the Ada Language System,
Version 1.1.0

ACVC Version: 1.8

Certificate Number: 870518W1.08064

rost Computer:

Machine: IBM 4381

Operating System: VM/SP CMS, Release 3.6

Memory Size: 32 megabytes

Target Computer:

Machine: IBM 4381

Operating System: VM/SP CMS, Release 3.6

Memory Size: 32 megabytes

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the
behavior of a compiler in those areas of the Ada Standard that
permit implementations to differ. Class D and E tests specifically
check for such implementation differences. However, tests in other
classes also characterize an in, '-rmentation. This compiler is
characterized by the following interpretations of the Ada Standard:

2apaol'ties.

0,',,piec orreuily processes tests cont. "riing loop
3LaGter,-!)ts nested to 65 levels, block statements -)e 9d to 65

and recursive procedures soparately c,. i led as
.ubuiiits n,. Itud to 10 levels. It .zorrectly pL'ocesses a
compilation containing 123 'ai'iables in the same declarative
part. (See tests D55A03A..H (8 tests), D56001B, D64005E..G (3
tests), and D29002K.)

Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation does not reject such calculations and processes
them correctly. (See tests D4AO02A, D4AO02B, D4AO04A, and
DAOO4B.)

. Predefined types.

This implementation -pports the additional predefined type
SHORT INTEGER, in the package STANDARD. (See tests B86001C and
B86001D.)

Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may
k'aise NUMERIC ERROR or CONSTRAINTERROR during execution. This
implementation raises NUMERICERROR during execution. (See
test E24101A.)

. Array types.

An implementation is allowed to raise NUMERICERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTE4.MAX INT.

2-2

CONFIGURATION INFORMATION

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERICERROR when the array type is declared. (See
test C52103X.)

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERIC ERROR when the array
subtype is declared. (See test C52104Y.)

A null array with one 'dimension of !tngth greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRATNT ERROR either
when declared or assigned. Alternatively, an implementation
nay Accept the declaration. However, lengths must matc in
array 3lice a .signments. Thi.s implementation raises
NUMERrC ERROR when the array type is declared. (See test
K52103Y.)

En assigning one-dimrnional array Lypes, the expression
appears to bc evaluated in its entirety before CONSTRAINT ERROR
is raised when checking whether the expression's subtype is
compatible with the target's subtype. In assigning
two-dimensional array types, the expression does not appear to
be evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either
accept or reject an incomplete type with discriminants that is
used in an access type definition with a compatible
discriminant constraint. This implementation accepts such
subtype indications. (See test E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINTERROR
is raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, the order
in which choices are evaluated and index subtype checks are
made appears to depend upon the aggregate itself. (See tests
C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are not evaluated before being checked for identical
bounds. (See test E43212B.)

2-

' 2-3

!4

CONFIGURATION INFORMATION

All choices are evaluated before CONSTRAINT ERROR is raised if
a bound in a nonnull range of a nonnull aggregate does not
belong to an index subtype. (See test E43211B.)

Functions.

An implementation may allow the declaration of a parameterless
function and an enumeration literal having the same profile in
the same immediate scope, or it may reject the function
declarati-r. If it accepts -e function declaration, the use
of the ofuioradion literal's iden£ij.fier deuotes the function.
This implimentation reject,3 ;.h ,1 ilaration. (See test
E66001D.)

Representation clau, .i.

The Ada Standard does not require an implementation to support
representation clauses. If a representation clause is not
supported, then the implementation must reject it. While the
operation of representation clauses is not checked by Version
1.8 of the ACVC, they are used in testing other language
features. This implementation accepts 'SIZE and 'STORAGESIZE
for tasks, 'STORAGE SIZE for collections, and 'SMALL clauses.
Enumeration representation clauses, including those that
specify noncontiguous values, appear to be supported. (See
tests C55B16A, C87B62A, C87B62B, C87B62C, and BC1002A.)

Pragmas.

The pragma INLINE is not supported for procedures or functions.
(See tests CA3004E and CA3004F.)

Input/output.

The package SEQUENTIAL 10 cannot be instantiated with
unconstrained array types and record types with discriminants.
The package DIRECT 10 cannot be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101C, AE2101H, CE2201D, CE2201E, and
CE2401D.)

An existing text file can be opened in OUT FILE mode, can be
created in OUT FILE mode, and can be created in INFILE mode.
(See test EE3102C.)

More than one internal file can be associated with each
external file for text I/O for reading only. (See tests
CE3111A..E (5 tests).)

2-4

...........

CONFIGURATION INFORMATION

More than one internal file can be associated with each
external file for sequential I/O for reading only. (See tests
CE2107A..F (6 tests).)

More than one internal file can be associated with each
external file for direct I/O for reading only. (See tests
CE2107A. - (6 tests).)

An external file associated with more than one internal file
,.annot be deleted. (See test CE2110B.)

Generics,

leneric subprograw ,LarAi;ions and bodies iannot be rolfpiled
in separat3 compi,i,.3. (See tes C12009F.)

Generic package decildacions and bodies cannot be compiled in
separate compilations, (See tests CA2009C and BC3205D.)

2

) 2-5

. 4"

CHAPTER 3

TEST INFORMAriON

3. ' RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing of
the IBM Development System for the Ada Language System was performed, 19
tests had been withdrawn. The remaining 2380 tests were potentially
applicable to this validation. The AVF determined that 340 tests were
inapplicable to this implementation, and that the 2040 applicable tests
were passed by the implementation.

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
_ _ _ A B C D E L

Passed 67 862 1053 16 11 31 2040

Failed 0 0 0 0 0 0 0

InaDplicable 2 5 315 1 2 15 340

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

3-1

,eBi ~ -

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

_ _ _ 2 3 4 5 6 7 8 9 10 11 12 14

Passed 93 205 280 243 160 97 137 262 107 32 217 207 2040

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 23 120 140 14 1 2 0 23 0 1 26 340

0 5 5 (0 1 1 2 4 0 ' 0 19

116 330 425 247 161)8 14 (?-64 134 32 219 231 2399

3.4 WITHDRAWN TESTS

The following 19 tests were withdrawn from ACVC Version 1.8 at the time of
this validation:

C32114A B37401A B49006A C92005A
B33203C C41 404A B4AO01OC C940ACA
C34018A B45116A B74101B CA3005A..D (4 tests)
C35904A C48008A C87B50A BC3204C

See ,% ndtx D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation is not necessarily inapplicable for a subsequent attempt. For
this validation attempt, 340 tests were inapplicable for the reasons
indicated:

. C34001E, B52004D, B55B09C, and C55BO7A use LONGINTEGER which is
not supported by this compiler.

. C34001F and C35702A use SHORTFLOAT which is not supported by this
compiler.

3-2

TEST INFORMATION

C34001G and C35702B use LONG_FLOAT which is not supported by this
compiler.

C52008B declares a record type with four discriminants of type
integer and having default values. The type may be used in the
declaration of unconstrained objects, but the size of these
objects exceeds the maximum object size of this implementation,
and NUMERICERROR is raised.

D64005G is inapplicable because it makes use of nested procedures
as subunits to a level of 17 which exceeds the capacity of the
oumpiler.

.i:*01D requires i predefined numeric type other than ;,hose
4-1 lned by the Ada language i. package STANDARD. There is no such
i': f'or this Iipiementation.

C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXTIO.

BAl01lC, CA1O12A, CA2009C, CA2009F, LA5008A..H (8 tests), LA5008J,
LA5008M, LA5008N, and BC3205D compile generic specifications and
bodies in separate compilations which is not supported by this
compiler.

. CA3004E, EA3004C, and LA3004A use INLINE pragma for procedures
which is not supported by this compiler.

* CA3004F, EA3004D, and LA30043 use INLINE pragma for, functions
which is not supported by this compiler.

LA5008I and LA5008K are inapplicable because, in this
implementation, a generic unit is made obsolete by the
recompilation of a unit on which the generic body (but not the
specification) depends. Since this implementation does not
support separate compilation of generic unit specifications and
bodies, a generic specification must be considered obsolete
whenever the body is found to be obsolete. These tests should
report at link time that the body of a generic unit is obsolete.
However, a compile-time error message reports that the generic
unit is obsolete.

• AE2101C, CE2201D, and CE2201E use an instantiation of package
SEQUENTIAL 10 with unconstrained array types which is not
supported by this compiler.

AE2101H and CE2401D use an instantiation of package DIRECT_10 with
unconstrained array types which is not supported by this compiler.

3-3

TEST INFORMATION

. CE2102D..F (3 tests), CE2102I, and CE2102J raise NAME_ERROR, and
CE2108A, CE2108C, CE2111A, and CE2111E raise USE ERROR when an
attempt is made to close an empty file. CMS does not allow empty
files to exist. CE2108B and CE2108D depend upon the successful
execution of tests CE2108A and CE2108C, respectively.

. CE2107B..E (4 tests), CE2110B, CE3111B..E (4 tests), and CE3114B,
are inapplicable because multiple internal files cannot be
associated with the same external file. T3 proper exception i.s
raised when multiple access is attempted.

the following 278 tests require a floating-point accuracy 'hat
exceeds the maximum of six supported by the implementation:

'4113C..Y (23 tests) C35708C..Y (23 tet-3) C45421f. .Y 23 tests)
'3')T05C..Y (23 tests) C35802C..Y (23 tests) C45424C..Y (23 tests)
Cj5706C..Y (23 tests) C45241C..Y (23 tests) C45521C..Z (24 tests)
C35707C..Y (23 tests) C45321C..Y (23 tests) C45621C..Z (24 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Cla3s A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for eight Class B tests:

B97101E BA3006A BA3007B BA3008B
BA1101C BA3006B BA3008A BA3013A

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.8 produced by
the IBM Development System for the Ada Language System was submitted to the
AVF by the applicant for review. Analysis of these results demonstrated
that the compiler successfully passed all applicable tests, and that the
compiler exhibited the expected behavior on all inapplicable tests.

3-4

vvwu

TEST INFORMATION

3.7.2 Test Method

Testing of the IBM Development System for the Ada Language System using
ACVC Version 1.8 was conducted on-site by a validation team from the AVF.
The configuration consisted of an IBM 4381 host operating under VM/SP CMS,
Release 3.6, and an IBM 4381 target operating under VM/SP CMS, Release 3.6.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was tiken on-site by the
vali lation team for processing. Tests that make use of
impil~rentation-specific values were customized before being written to the

.9t) r. ne. Tests requiring splits during the prewvlidation testing
lied in their split rorm on the magnetac tape.

,', UlC5 of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled on the IBM 4381, and all executable tests were linked and run
on the IBM 4381 using six batch streams. Results were printed.

The compiler was tested using command scripts provided by TeleSoft, Inc.,
and reviewed by the validation team. The tests were compiled with all
default options in effect except for the following:

Option Effect

CLEAN deletes object files produced by test
execution after each test is executed

RUN/TEXT causes test program to be executed and
captures all terminal/console I/O to a
disk file

LIST/ERRI produces a compilation listing with
interspersed errors (B tests only)

ERROR/LIST produces a compilation listing with
interspersed syntactic or semantic
errors (executables only)

Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3.7.3 Test Site

The validation team arrived at TeleSoft, Inc., San Diego CA on 18 May 1987.
Testing was completed on 19 May 1987.

3-5

APPENDIX A

DECLARATION OF CONFORMANCE

International Business Machines Corporation has
submitted the following declaration of conformance
concerning the IBM Development System for the Ada
Language System.

A-1

DECLARATION OF CONFORMANCE

Compiler Implementor: TeleSoft
Ada Validation Facility: ASD/SCOL, Wright-Patterson AFB, OH
Ada Compiler Validation Capability (ACVC), Version 1.8

Base Configuration

Base Compiler Name- IBM Development System for the Ada7' Language System., Version 1.1.0
Host Architecture ISA: IBM 4381

i':erating System: , NI 'P CMS. Release 3.6
'. ,, itecture ISA: IB. '381

.- raing System: VM SP CMS, Release 3.6

Implement or's Declaration

1. the undersigned, representing TeleSoft have implemented no deliberate extensions to the Ada
Language Standard ANSI/MIL-STD-1815A in the compiler listed in this declaration. I declare
that International Business Machines Corporation is the owner of record of the object code of the
Ada language compiler listed above and, as such, is responsible for maintaining said compiler in
conformance to ANSI/MIL-STD-1815A. All certificates and registrations for the Ada language
compiler listed declaration shall be made only in the owner's corporate name.

________________Date:__ _ __ _ _

Raymond A. Parra, Director, Cortracts & Legal

Owner's Declaration

I. the undersigned, representing International Business Machines Corporation take full
responsibility for implementation and maintenance of the Ada compiler listed above, and agree to
the public disclosure of the final Validation Summary Report. I further agree to continue to
comply with the Ada trademark policy, as defined by the Ada Joint Program Office. I declare
that all of the Ada language compilers listed, and their host/target performance are in
compliance with the Ada Language Standard ANSI!MIL-STD-1815A.

10 Date: ' 2
InV t ational Business Machines Corporation
Jaes R. Hamilton

"Ada" is a registered trademark of the U.S. Government, Ada Joint Program Office.

APPENDIX B

APPENDTX F OF THE Ada STANDARD

Ihe only ,ilowed implementation dependencies correspond to tiplementation-
dependent pragmas, to certain machine-dependent convention2 1. mn-tioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the IBM Development System for the Ada Language System, Version 1.1.0, are
described in the following sections which discuss topics in Appendix F of
the Ada Language Reference Manual (ANSI/MIL-STD-1815A).
Implementation-specific portions of the package STANDARD are also included
in this appendix.

package STANDARD is

type INTEGER is range -(2*'31) .. (2"'31)-I;

type SHORT INTEGER is range -(2"15) .. (2"'15)-I;
type FLOAT is digits 6 range -7.237005146E+75 .. 7.237005146E+75;
type DURATION is delta 2#1.0#.Ilt range -86400.0 .. 86400.0;

end STANDARD;

B-1

Ing.

1. 1

APPENDIX F

OF THE LANGUAGE REFERENCE MANUAL

The Ada language definition allows for certain target dependencies in a controlled %
manner. This section, called Appendix F as prescribed in the LRM. describes
implemenltation-dependent characteristics of the IBM Development System for the Ada
an1i System, Version 1.1.0, running under CMS.

i. Implementation-Defined Pragmas

:.-a:; INTERFACE(Assembly. suhro,* i, name.,

g;.i SUPPRESS(<condition narme on = <name>)

where: <condition name> is one of: access check, discriminant check. index check.
!ength _check, range check, division-check, elaboration _check, storage _check.

pragma ELABORATE(<libraryunit _name> {, <library unit name. });

Specifies order of elaboration for the mentioned library units.

pragma PRIORITY (<priority _type>);

Specifies priority for a task.

2. Implementation-Defined Attributes

There are no implementation-defined attributes.

3. Package SYSTEM

TIe current specification of package SYSTEM is provided below.

PACKIA(;E System IS

TYPE Address is Access Integer;
TYPE Name IS (mc68000, anuyk44, ibm370);
SystemName : CONSTANT name := ibm370;
Storage Unit : CONSTANT := 8;
Memory Size :CONSTANT :=2**24-1;

-- System-Dependent Named Numbers:

Min Int : CONSTANT := -(2 ** 31); p
Max Int : CONSTANT := (2 ** 31) - 1;
MaxDigits : CONSTANT =6;
Max Mantissa: CONSTANT:= 31;
Fine Delta : CONSTANT := 1.0 / (2 ** (Max Mantissa- 1));
Tick : CONSTANT := 1.0 / (10 ** 6);

-- Other System-Dependent Declarations 1

B-2

TYPE Display _Info is array (I .. 17) of Address;
TYPE SubprogramValue is record

Entry _Point Address : Address;
Display : DisplayInfo:

end record:
SUBTYPE Priority IS Integer RANGE 0 .. 255;

end S\ STEM:

4. Representation Clauses

This implementation supports -iddress. length. enuri,.:"tion. and record
. clauses.

5. Implementation-Generated Names

There are no implementation-gencrated names denoting implementation-dependent
components. Names generated by the compiler shall not interfere with programmer-
defined names.

6. Address Clause Expression Interpretation

Expressions that appear in Address clauses, including those for interrupts, are
interpreted as virtual memory addresses.

7. Unchecked Conversion Restrictions

Unchecked conversions are allowed between types (or subtypes) TI and T2 provided
that:

(1) They ha~e the same static size.

(2) They are not private.

8. Implementation-Dependent Characteristics of the I/O Packages

* Sequential 10, Direct_10, and Text10 are supported.

* LowLevel 10 is not supported.

0 Unconstrained array types and unconstrained types with discriminnts may not
be instantiated for 1/0.

* File names follow the conventions and restrictions of the target operating
syvstem.

* In Text 10, the type Field is defined as follows: subtype Field is integer range
0.. 1000;

0 In Text 10, the type Count is defined as follows: type Count is range
0..2 147 483 646;

9. Package STANDARD

The current specification of package STANDARD includes:

type INTEGER is range -(2**31) .. (2**31)-1:

type SHORT INTEGER is range -(2**15) .. (2**15)-1:

B-3

m"o

type FLOAT is digits 6 range -7.237005146E--75 .. 7.237005146E+75
type DURATION is delta 2#1.0#E-14 range -86400.0 .. 86400.0;

10. Compilation of Generic Units

The declaration. body, and any subunits of a generic unit must be submitted as a
single compilation (i.e., must be in the same source file).

11. Restrictions on Machine Code Insertions

1achine code insertions are not supported.

B-I.
w u'- ~'41 V aw ~ ~ %~%

APPENDIX C

TEST PARAMETERS

;ertain tests in the ACVC make use of implementation-dependent ialues, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIGIDI (l..199 W>A', 200 Wl'I)

Identifier the size of the
maximum input line length with
varying last character.

$BIGID2 (l..199 >'A', 200 >'2')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID3 (1..100 I 102..200 >'A',

Identifier the size of the 101 =>'3')
maximum input line length with
varying middle character.

$BIGD4 (1..100 I 102..200 =>'A',
Identifier the size of the 101 =>'4')
maximum input line length with
varying middle character.

$BIGINTLIT (1..197 :>'0', 198..200 =>"298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-1

-' '-~ -, ~'%~u..............>.kN%'

TEST PARAMETERS

Name and Meaning Value

$BIGREALLIT (..194 :>'O', 195..200 =>
A real literal that can be "69.OE1")
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be
the size of the maximum line
length.

$BLANKS 0_.180 =>t I)

A sequence of blanks twenty
(1haracters fewer than the size
of the maximum line length.

$COUNTLAST 2_147_483_645
A universal integer literal
whose value is TEXTIO.COUNT'LAST.

$EXTENDED ASCII CHARS "abcdefghijklmnopqrstuvwxyz" &
A string literal containing all "I$%?@'{}"
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELDLAST 1000
A universal integer literal
whose value is TEXTIO.FIELD'LAST.

$FILENAMEWITH BAD CHARS "X)%I #&-Y"
An illegal- external file name
that either contains invalid
characters, or is too long if no
invalid characters exist.

$FILENAME WITH WILD CARD CHAR "XYZ*"
An external file name that
either contains a wild card
character, or is too long if no
wild card character exists.

$GREATER THAN DURATION 86 401.0
A universal real value that lies
between DURATION'BASE'LAST and
DURATION'LAST if any, otherwise
any value in the range of
DURATION.

$GREATER THAN DURATION BASELAST +131_072.0
The universal real value that is
greater than DURATION'BASE'LAST,
if such a value exists.

C-2

TEST PARAMETERS

Name and Meaning Value

$ILLEGALEXTERNAL FILE NAME1 "BAD-CHARACTER*% "

An illegal external file name.

$ILLEGALEXTERNAL FILE NAME2 "AAA*AAA"
An illegal external file name
that is different from
$ILLEGALEXTERNALFILENAME1.

$INTEGERFIRST -(2"31)
The universal integer literal
expression whose value is
INTEGER'FIRST.

$INTEGERLAST (2"*31)-I
The universal integer literal
expression whose value is
INTEGER'LAST.

$LESS THANDURATION -86401.0
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST if any, otherwise
any value in the range of
DURATION.

$LESSTHANDURATION BASEFIRST -131_072.0
The universal real value that is
less than DURATION'BASE'FIRST,
if such a value exists.

$MAXDIGITS 6
The universal integer literal
whose value is the maximum
digits supported for
floating-point types.

$MAX_ IN_ LEN 200
The universal integer literal
whose value is the maximum
input line length permitted by
the implementation.

$MAX INT 2_ 47_483_647
The universal integer literal

whose value is SYSTEM.MAXINT.

C-3

TEST PARAMETERS

Name and Meaning Value

$NAME SHORTSHORTINTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORTINTEGER,
LONG_FLOAT, or LONG INTEGER
if one exists, otherwise any
undefined name.

$NEGBASEDINT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

$NONASCIICHAR TYPE (NONNULLEBCDIC GRAPHICS)
An enumerated type definition
for a character type whose
literals are the identifier
NON NULL and all non-ASCII
characters with printable
graphics.

C-4

I.a

O

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the

Ada Standard. The following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

. C32114A: An unterminated string literal occurs at line 62.

• B33203C: The reserved word "IS" is misspelled at line 45.

• C34018A: The call of function G at line 114 is ambiguous in the
presence of implicit conversions.

. C35904A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMERICERROR instead of CONSTRAINTERROR as expected in

the test.

. B37401A: The object declarations at lines 126 through 135 follow

subprogram bodies declared in the same declarative part.

. C41404A: The values of 'LAST and 'LENGTH are incorrect in the if

statements from line 74 to the end of the test.

B45116A: ARRPRIBL1 and ARRPRIBL2 are initialized with a value of

the wrong type--PRIBOOLTYPE instead of ARRPRIBOOLTYPE--at line

41.

C48008A: The assumption that evaluation of default initial values

occurs when an exception is raised by an allocator is incorrect
according to AI-00397.

B49006A: Object declarations at lines 41 and 50 are terminated

incorrectly with colons, and end case; is missing from line 42.

B4AO10C: The object declaration in line 18 follows a subprogram
body of the same declarative part.

D-1

-IF -IIP' 0,*

WITHDRAWN TESTS

. B74101B: The begin at line 9 causes a declarative part to be
treated as a sequence of statements.

. C87B50A: The call of "/=" at line 31 requires a use clause for
package A.

. C92005A: The "/=" for type PACK.BIG INT at line 40 is not visible
without a use clause for the package PACK.

* C940ACA: The assumption that allocated task TT will run prior to
the main program, and thus assign SPYNUMB the value checked for by
the main program, is erroneous.

* CA3005A..D (4 tests): No valid elaboration order exists for these
tests.

* BC3204C: The body of BC3204C0 is missing.

D-2

4

LDIC

Wi w

.I~I# I~.v .7,

